This Tech Fuels New Growth for the Internet of Things

If you use a smartphone or a digital camera, you are probably already a big user of flash storage cards. Flash memory technology allows for persistent electronic data storage that isn’t erased when power is lost. Furthermore, since it is a fully solid-state electronic data storage technology, it doesn’t suffer the drawbacks of moving parts and bulkiness associated with hard drives.

Since flash storage components are small and rugged, they are perfect for small mobile devices such as smartphones. With the use of a memory card, a user’s data are also easily ported from one device to another.

These natural advantages of flash memory have driven sharp growth for the flash industry. Demand is being driven not only by smartphones, tablets, PCs and servers.

But flash memory has been reaching a dead end. Nearly all of our semiconductor technology improvement over the past decades has been due to shrinkage. Smaller electronic components mean more of them on a chip, and therefore a more powerful computer. In processors, that means more power; in computer memory, that means more density and power efficiency.

Flash is no different. To make flash more efficient and powerful, the individual elements have to be shrunk — as has happened many times. However, every time the tiny transistors in a flash memory chip are shrunk, performance degrades.

Flash memory circuits with smaller elements aren’t as good at storing data for a long period of time as larger ones. They are less reliable. Furthermore, the way flash stores data — using electron charge-based technology — is power thirsty. This makes it less than ideal for small IoT devices, many of which run using batteries.

It’s time for a next-generation memory technology to replace flash.

And as luck would have it the next generation is almost here in breakthrough new technology called conductive-bridging random access memory or CBRAM, originally…

Article Source…

Leave a Reply

Your email address will not be published. Required fields are marked *