Novel Continuous Cell Culture Method for Adherent Cells: Is it Useful?

A new cell culture method for adherent cells—touted as a continuous upstream manufacturing technique suited specifically for cell-based therapies—was recently announced. The technique relies on a special coating applied to surfaces where adherent cells attach. The Newcastle University study describing the approach was published in ACS Applied Materials & Interfaces.

The coating is said to be capable of controlling the attachment and proliferation of cells, and it reportedly also allows the cells (in this case, human corneal stromal cells) to self-detach from culture. This is a departure from current cell-detachment methods, wherein cells are typically removed from a growth surface with the help of chemicals.

Because the cells grow in a sheet and slough away from the surface independently, surface area for a new layer of cells to form is continuously available. GEN spoke to John Bonham-Carter (who was not involved with the study), director of upstream sales and business development at Repligen, to discover what types of cells could benefit from such an innovation and see how this new method of continuous cell detachment compares to current methods of cell culture.

Is the technique described really novel?

Yes, it is novel in my view; it’s kind of [like] a reverse printing roller technique. Everyone else (I know of) is looking at cell cubes and other, multilayer scale-out [for cell culture].

Is the technique described only relevant to adherent cells?

So, this is the crux of the issue—absolutely everyone would prefer to get away from adherent cells because the current production techniques aren’t scalable.  So, continuing the parallel, rather than automate with a reverse printing technique, others are trying to go straight to 3D growth, either in scaffolds for tissue culture that are directly implantable (which assumes structure is key to function) or in traditional stirred-tank bioreactors…

Article Source…

Leave a Reply

Your email address will not be published. Required fields are marked *