Kessler Foundation study shows neuromechanical effects of exoskeleton-assisted walking in spinal cord injury

Kessler Foundation

Kessler Foundation researchers have recently published findings of a study examining the effects of exoskeleton-assisted walking on gait parameters and neuromuscular activity in able-bodied individuals and individuals with spinal cord injury (SCI). The article, “Neuromechanical adaptations during a robotic powered exoskeleton assisted walking session” (doi:10.1080.10790268.2017.1314900) was epublished ahead of print on April 20, 2017, in the Journal of Spinal Cord Medicine. The authors are Arvind Ramanujam, Erica Garbarini, Rakesh Pilkar, and Gail Forrest of Kessler Foundation, and Pierre Asselin and Christopher M. Cirnigliaro of the James J. Peters VA Medical Center. This is the first original research journal article published by Kessler Foundation researchers in the field of robotic exoskeleton training. The article’s link is http://tinyurl.com/jwg466c

In the U.S., robotic exoskeletons are being used for rehabilitation and community use by individuals with SCI. Scientists at Kessler Foundation are interested in evaluating the effects of exoskeleton-assisted walking on locomotion, as well as the changes in neuromuscular profiles. In this study, researchers measured the effects of exoskeleton-assisted walking under the “Max Assist” condition during a single session on gait parameters, including the 3-D kinematics of ankle, knee and hip motion, and muscle activation patterns in four individuals with SCI and four able-bodied individuals. The “Max Assist” setting provides the participant with maximum amount of motor assistance to the lower limbs while walking through a predefined walking pattern. For the able-bodied group, data were also collected during overground non-exoskeleton-assisted walking….

Article Source…

Leave a Reply

Your email address will not be published. Required fields are marked *